Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 978
Filtrar
1.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669339

RESUMO

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Assuntos
Envelhecimento , Domínio Catalítico , Catarata , Glutamato-Cisteína Ligase , Glutationa , Cristalino , Catarata/patologia , Catarata/genética , Catarata/metabolismo , Animais , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Camundongos , Glutationa/metabolismo , Cristalino/metabolismo , Cristalino/patologia , Envelhecimento/metabolismo , Humanos , Modelos Animais de Doenças , Mutação , Técnicas de Introdução de Genes
2.
Clin Dysmorphol ; 33(2): 63-68, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441200

RESUMO

Aniridia is an autosomal dominant condition characterized by the complete or partial absence of the iris, often with additional presentations such as foveal hypoplasia, nystagmus, cataract, glaucoma and other ocular abnormalities. Most cases are caused by heterozygous mutations in the paired box 6 gene (PAX6), which codes for a transcription factor that regulates eye development. Four patients from our hospital who presented with ocular phenotypes were recruited for research sequencing with informed consent. Sanger sequencing of PAX6 coding exons or exome sequencing was performed on genomic DNA from venous blood samples. Variants in PAX6 were identified in the four patients. Two variants are recurrent single-nucleotide substitutions - one is a substitution found in a patient with bilateral aniridia, whereas the other is a splice variant in a patient with nystagmus and neuroblastoma. The other two variants are novel and found in two patients with isolated aniridia. Both are small duplications that are predicted to lead to premature termination. For the recurrent variants, the comparison of phenotypes for patients with identical variants would shed light on the mechanisms of pathogenesis, and the discovery of two novel variants expands the spectrum of PAX6 mutations.


Assuntos
Aniridia , Catarata , Humanos , Face , Aniridia/genética , Catarata/genética , Éxons , Sudeste Asiático , Fator de Transcrição PAX6/genética
3.
Chem Biol Drug Des ; 103(2): e14491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38404215

RESUMO

N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.


Assuntos
Catarata , Complicações do Diabetes , MicroRNAs , Superóxido Dismutase , Humanos , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
5.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304971

RESUMO

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Células Epiteliais , Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cristalino , Osteogênese , Humanos , Cristalino/metabolismo , Cristalino/patologia , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Glucose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Catarata/patologia , Catarata/metabolismo , Catarata/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Hiperglicemia/metabolismo , Hiperglicemia/genética , Hiperglicemia/patologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/genética , Células Cultivadas
6.
Sci Rep ; 14(1): 4123, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374148

RESUMO

Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.


Assuntos
Catarata , Cristalino , Ratos , Animais , Galactose/metabolismo , Ácido Glutâmico/metabolismo , Catarata/induzido quimicamente , Catarata/genética , Cristalino/metabolismo , Apoptose , Células Epiteliais/metabolismo
7.
Curr Eye Res ; 49(5): 496-504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38200696

RESUMO

PURPOSE: To identify the inactive genes in cataract lenses and explore their function in lens epithelial cells (LECs). METHODS: Lens epithelium samples obtained from both age-related cataract (ARC) patients and normal donors were subjected to two forms of histone H3 immunoprecipitation: H3K9ac and H3K27me3 chromatin immunoprecipitation (ChIP), followed by ChIP-seq. The intersection set of "active genes in normal controls" and "repressed genes in cataract lenses" was identified. To validate the role of a specific gene, ETV1, within this set, quantitative polymerase chain reaction (qPCR), western blot, and immunofluorescence were performed using clinical lens epithelium samples. Small interference RNA (siRNA) was utilized to reduce the mRNA level of ETV1 in cultured LECs. Following this, transwell assay and western blot was performed to examine the migration ability of the cells. Furthermore, RNA-seq analysis was conducted on both cell samples with ETV1 knockdown and control cells. Additionally, the expression level of ETV1 in LECs was examined using qPCR under H2O2 treatment. RESULTS: Six genes were identified in the intersection set of "active genes in normal controls" and "repressed genes in ARC lenses". Among these genes, ETV1 showed the most significant fold-change decrease in the cataract samples compared to the control samples. After ETV1 knockdown by siRNA in cultured LECs, reduced cell migration was observed, along with a decrease in the expression of ß-Catenin and Vimentin, two specific genes associated with cell migration. In addition, under the oxidative stress induced by H2O2 treatment, the expression level of ETV1 in LECs significantly decreased. CONCLUSIONS: Based on the findings of this study, it can be concluded that ETV1 is significantly reduced in human ARC lenses. The repression of ETV1 in ARC lenses appears to contribute to the disrupted differentiation of lens epithelium, which is likely caused by the inhibition of both cell differentiation and migration processes.


Assuntos
Catarata , Proteínas de Ligação a DNA , Cristalino , Fatores de Transcrição , Humanos , Catarata/genética , Catarata/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Curr Eye Res ; 49(4): 391-400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095165

RESUMO

PURPOSE: Accumulated evidence has shown that microRNAs (miRNAs) are closely related to the pathogenesis and progression of senile cataracts. Here we investigate the effect of miR-29a-3p in cataractogenesis and determined the potential molecular mechanism involved. METHODS: In this study, we constructed a selenite cataract model in rats and obtained the miRNAs related to cataracts by whole transcriptome sequencing. To investigate the effect and mechanism of miR-29a-3p on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, luciferase reporter assay, Edu assay, and western blot analysis. RESULT: Sequencing data showed downregulation of miR-29a-3p in rats with selenite cataracts. Down-regulation of miR-29a-3p could promote lens epithelial cells (SRA01/04) proliferation and inhibit cell apoptosis, and miR-29a-3p silence could inhibit the development of cataracts. Additionally, CAND1 was a direct target gene for miR-29a-3p. CONCLUSION: These data demonstrate that miR-29a-3p inhibits apoptosis of lens epithelial cells by regulating CAND1, which may be a potential target for senile cataracts.


Assuntos
Catarata , MicroRNAs , Animais , Ratos , Regulação para Cima , Proliferação de Células , MicroRNAs/genética , Células Epiteliais/patologia , Catarata/genética , Catarata/patologia , Apoptose/genética , Ácido Selenioso
10.
Mol Cell Biochem ; 479(4): 743-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37171723

RESUMO

Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFß2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFß2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFß2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.


Assuntos
Caderinas , Opacificação da Cápsula , Catarata , Cristalino , MicroRNAs , Animais , Humanos , Camundongos , Opacificação da Cápsula/genética , Opacificação da Cápsula/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Cristalino/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Biomolecules ; 13(11)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-38002297

RESUMO

While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.


Assuntos
Extração de Catarata , Catarata , Cristalino , Animais , Embrião de Galinha , Cristalino/metabolismo , Catarata/genética , Catarata/metabolismo , Galinhas , Epitélio/metabolismo
12.
J Binocul Vis Ocul Motil ; 73(4): 104-108, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37931120

RESUMO

Congenital cataracts account for a significant proportion of blindness in children worldwide. They affect approximately 12-136 per 100,000 births worldwide. A genetic etiology is present in a large proportion of patients and can lead to isolated cataracts or those in the context of genetic multisystem disorders. We present two examples of genetically determined childhood cataracts and briefly review the work-up of such patients. Mutations in numerous genes have been identified that cause congenital cataracts, such as those encoding for crystallins, connexins and aquaporins, as well as some developmental regulatory proteins. Identifying the genetic or molecular etiology of congenital cataract is essential for identifying and better understanding the pathways leading to this disease, and for providing individualized genetic counseling and guiding treatment for possible associated systemic problems.


Assuntos
Catarata , Cristalinas , Criança , Humanos , Catarata/congênito , Catarata/genética , Testes Genéticos , Fatores de Transcrição/genética , Mutação , Cristalinas/genética
13.
BMC Med Genomics ; 16(1): 241, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828500

RESUMO

BACKGROUND: Cranio-lenticulo-sutural dysplasia (CLSD) is a rare dysmorphic syndrome characterized by skeletal dysmorphism, late-closing fontanels, and cataracts. CLSD is caused by mutations in the SEC23A gene (OMIM# 607812) and can be inherited in either an autosomal dominant or autosomal recessive pattern. To date, only four mutations have been reported to cause CLSD. This study aims to identify the disease-causing variants in a large cohort of congenital cataract patients, to expand the genotypic and phenotypic spectrum of CLSD, and to confirm the association between SEC23A and autosomal recessive CLSD (ARCLSD). METHODS: We collected detailed medical records and performed comprehensive ocular examinations and whole-exome sequencing (WES) on 115 patients with congenital cataracts. After suspecting that a patient may have CLSD based on the sequencing results, we proceeded to conduct transmission electron microscopy (TEM) on the cultured skin fibroblasts. The clinical validity of the reported gene-disease relationships for the gene and the disease was evaluated using the ClinGen gene curation framework. RESULTS: Two novel compound heterozygous variants (c.710A > C p.Asp237Ala, c.1946T > C p.Leu649Pro) of the SEC23A gene, classified as variant of uncertain significance, were identified in the proband with skeletal, cardiac, ocular, and hearing defects. The observation of typical distended endoplasmic reticulum cisternae further supported the diagnosis of CLSD. Application of the ClinGen gene curation framework confirmed the association between SEC23A and ARCLSD. CONCLUSION: This study expands the genotypic and phenotypic spectrum of CLSD, proposes TEM as a supplemental diagnostic method, and indicates that congenital cataracts are a typical sign of ARCLSD.


Assuntos
Catarata , População do Leste Asiático , Humanos , Catarata/congênito , Catarata/diagnóstico , Catarata/genética , Retículo Endoplasmático , Família , Mutação , Linhagem , Proteínas de Transporte Vesicular/genética
14.
Biomolecules ; 13(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759728

RESUMO

Inflammatory, vasculogenic, and profibrogenic factors have been previously reported in vitreous (VH) and aqueous (AH) humors in myopic patients who underwent cataract surgery. In light of this, we selected some mediators for AH and anterior-capsule-bearing lens epithelial cell (AC/LEC) analysis, and AH expression was correlated with LEC activation (epithelial-mesenchymal transition and EMT differentiation) and axial length (AL) elongation. In this study, AH (97; 41M/56F) and AC/LEC samples (78; 35M/43F) were collected from 102 patients who underwent surgery, and biosamples were grouped according to AL elongation. Biomolecular analyses were carried out for AH and LECs, while microscopical analyses were restricted to whole flattened AC/LECs. The results showed increased levels of interleukin (IL)-6, IL-8, and angiopoietin-2 (ANG)-2 and decreased levels of vascular endothelium growth factor (VEGF)-A were detected in AH depending on AL elongation. LECs showed EMT differentiation as confirmed by the expression of smooth muscle actin (α-SMA) and transforming growth factor (TGF)-ßR1/TGFß isoforms. A differential expression of IL-6R/IL-6, IL-8R/IL-8, and VEGF-R1/VEGF was observed in the LECs, and this expression correlated with AL elongation. The higher VEGF-A and lower VEGF-D transcript expressions were detected in highly myopic LECs, while no significant changes were monitored for VEGF-R transcripts. In conclusion, these findings provide a strong link between the AH protein signature and the EMT phenotype. Furthermore, the low VEGF-A/ANG-2 and the high VEGF-A/VEGF-D ratios in myopic AH might suggest a specific inflammatory and profibrogenic pattern in high myopia. The highly myopic AH profile might be a potential candidate for rating anterior chamber inflammation and predicting retinal distress at the time of cataract surgery.


Assuntos
Humor Aquoso , Catarata , Humanos , Fator D de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/genética , Interleucina-8 , Biomarcadores , Células Epiteliais , Interleucina-6 , Catarata/genética
15.
J AAPOS ; 27(5): 271.e1-271.e5, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717619

RESUMO

BACKGROUND: Children with unexplained bilateral cataracts routinely undergo testing for genetic, infectious, and metabolic etiologies. We evaluated the diagnostic yield of various tests ordered by pediatric ophthalmologists to evaluate bilateral cataracts in children at a single institution. METHODS: We retrospectively identified all children with bilateral unexplained cataracts who underwent cataract surgery by a pediatric ophthalmologist at Children's Hospital Colorado from 2006 to 2022. We reviewed the results of genetic, infectious, and metabolic testing ordered by pediatric ophthalmologists to evaluate the cataracts in these children. RESULTS: A total of 43 children met inclusion criteria. Of these, 34 (79%) had genetic testing, 34 (79%) had infectious disease testing, 33 (77%) had galactosemia testing, and 17 (40%) had urine-reducing substances testing performed during their cataract evaluation. Of the genetic tests ordered, 17 (50%) revealed a pathogenic mutation associated with cataracts. Twenty-three (68%) patients were IgG-positive for a TORCH infection, but no child was found to be positive on confirmatory testing. Of the galactosemia and URS tests ordered, 3 tests (9%) and 1 (6%) test were initially found to be abnormal, respectively, but confirmatory testing and clinical judgment ruled out metabolic disease in each case. CONCLUSIONS: Genetic testing should be strongly considered in all cases of unexplained bilateral pediatric cataracts. Metabolic and infectious testing is best considered only after consultation with the child's pediatrician, guided by the patient's clinical context and the availability of genetic testing.


Assuntos
Extração de Catarata , Catarata , Galactosemias , Oftalmologistas , Criança , Humanos , Lactente , Catarata/diagnóstico , Catarata/genética , Catarata/complicações , Extração de Catarata/efeitos adversos , Colorado/epidemiologia , Galactosemias/complicações , Hospitais Pediátricos , Estudos Retrospectivos
16.
Redox Biol ; 66: 102869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37677999

RESUMO

The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.


Assuntos
Catarata , Proteoma , Humanos , Animais , Camundongos , Glutationa , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas Mutantes , Oxirredução , Taurina , Catarata/genética
17.
JAMA Ophthalmol ; 141(9): 872-879, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589989

RESUMO

Importance: The p.Asp67Tyr genetic variant in the GJA3 gene is responsible for congenital cataracts in a family with a high incidence of glaucoma following cataract surgery. Objective: To describe the clinical features of a family with a strong association between congenital cataracts and glaucoma following cataract surgery secondary to a genetic variant in the GJA3 gene (NM_021954.4:c.199G>T, p.Asp67Tyr). Design, Setting, and Participants: This was a retrospective, observational, case series, genetic association study from the University of Iowa spanning 61 years. Examined were the ophthalmic records from 1961 through 2022 of the family members of a 4-generation pedigree with autosomal dominant congenital cataracts. Main Outcomes and Measures: Frequency of glaucoma following cataract surgery and postoperative complications among family members with congenital cataract due to the p.Asp67Tyr GJA3 genetic variant. Results: Medical records were available from 11 of 12 family members (7 male [63.6%]) with congenital cataract with a mean (SD) follow-up of 30 (21.7) years (range, 0.2-61 years). Eight of 9 patients with congenital cataracts developed glaucoma, and 8 of 8 patients who had cataract surgery at age 2 years or younger developed glaucoma following cataract surgery. The only family member with congenital cataracts who did not develop glaucoma had delayed cataract surgery until 12 and 21 years of age. Five of 11 family members (45.5%) had retinal detachments after cataract extraction and vitrectomy. No patients developed retinal detachments after prophylactic 360-degree endolaser. Conclusions and Relevance: The GJA3 genetic variant, p.Asp67Tyr, was identified in a 4-generation congenital cataract pedigree from Iowa. This report suggests that patients with congenital cataract due to some GJA3 genetic variants may be at especially high risk for glaucoma following cataract surgery. Retinal detachments after cataract extraction in the first 2 years of life were also common in this family, and prophylactic retinal endolaser may be indicated at the time of surgery.


Assuntos
Extração de Catarata , Catarata , Conexinas , Glaucoma , Descolamento Retiniano , Criança , Pré-Escolar , Humanos , Masculino , Catarata/genética , Extração de Catarata/efeitos adversos , Variação Genética , Glaucoma/genética , Retina , Estudos Retrospectivos , Conexinas/genética
18.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571310

RESUMO

Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.


Assuntos
Catarata , Fator 2 Relacionado a NF-E2 , Humanos , Animais , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Ascórbico , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa/metabolismo , Oxirredução , Transdução de Sinais , Catarata/genética , Catarata/metabolismo , Vitaminas
19.
Korean J Ophthalmol ; 37(4): 314-321, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400084

RESUMO

PURPOSE: The aim of this study is to describe the clinical profile, pedigree charting, and management of children with familial cataracts at a child eye health tertiary facility in southwest Nigeria. METHODS: The clinical records of children ≤16 years diagnosed with familial cataracts at the Pediatric Ophthalmology Clinic, University College Hospital Ibadan (Ibadan, Nigeria) from January 1, 2015, to December 31, 2019, were retrospectively reviewed. Information on demographic data, family history, visual acuity, mean refractive error (spherical equivalent), and surgical management was retrieved. RESULTS: The study included 38 participants with familial cataract. The mean age at presentation was 6.30 ± 3.68 years, with a range of 7 months to 13 years. Twenty-five patients (65.8%) were male. All patients had bilateral involvement. The mean duration from onset of symptoms to presentation at the hospital was 3.71 ± 3.20 years, with a range of 3 months to 13 years. In 16 of the 17 pedigree charts obtained, at least one individual was affected in each generation. The most common cataract morphology was cerulean cataract, observed in 21 eyes (27.6%). The most common ocular comorbidity was nystagmus which was observed in seven patients (18.4%). Sixty-seven eyes of 35 children underwent surgery within the period of the study. The proportion of eyes that had best-corrected visual acuity ≥6 / 18 before surgery was 9.1%; this proportion had increased to 52.7% at the last postoperative visit. CONCLUSIONS: Autosomal dominant inheritance appears to be the major pattern among our patients with familial cataract. The most common morphological type found in this cohort was cerulean cataract. Genetic testing and counseling services are vital for the management of families with childhood cataract.


Assuntos
Extração de Catarata , Catarata , Criança , Humanos , Masculino , Lactente , Feminino , Estudos Retrospectivos , Países em Desenvolvimento , Nigéria , Catarata/epidemiologia , Catarata/genética
20.
Proc Natl Acad Sci U S A ; 120(31): e2221522120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487085

RESUMO

Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90ß (HSP90ß) plays a fundamental role in suppressing cataractogenesis. HSP90ß is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90ß is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90ß silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90ß can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90ß silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90ß and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90ß is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.


Assuntos
Catarata , Proteínas de Choque Térmico HSP90 , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Envelhecimento/genética , Catarata/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Corpos Multivesiculares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA